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SUMMARY 

Three-dimensional laminar flow over a flat plate with uniform suction is considered for a specific class of 
outer-flows. A series solution of the boundary-layer equations is obtained for the asymptotic ease, that 
corresponding to transverse velocity which is everywhere constant. The limitations of the asymptotic solution 
are examined in terms of existing theory and experimental data for the analogous two-dimensional ease. A 
numerical example, typical of aircraft flight parameters, is discussed in relation to the analogous imper- 
meable wall ease. 

1. Introduction 

The use of wall suction to delay transition from laminar to turbulent flow is a subject of increasing 
practical importance because of the implications relative to energy conservation. Solutions to 

the boundary-layer equations are available for several geometries, suction velocity distributions, 

and compressible, as well as incompressible flow. Preston [1] obtained the two-dimensional, 
asymptotic, constant-suction-velocity solution for a flat plate which yields the exponential 

velocity profile. Iglisch [2] extended the latter to provide a description of the flow field in the 

initial length. The limitations of  the asymptotic solution relative to Iglisch's analysis are dis- 
cussed by Schlichting [3]. The case of wall suction and injection prescribed by Vo(X) ~ x-1/2, 

for a flat plate, was solved by Schlichting and Bussmann [4]. For uniform suction, the com- 

pressibility effect was determined by Lew and Fanucci [5]. An excellent summary of related 

work predating 1961 is found in Lachmann [6]. More recently, the rotating disc with suction 

and injection has been considered by Ackroyd [7] and the related subject of stability of flow 

over wings with suction has received attention from Lekondis [8] and other authors. 
The problem of three-dimensional flow over a fiat surface, with suction, is one that remains 

to be solved. Hansen and Herzig [9] obtained a similarity solution for the impermeable wall 

case, restricted to a specific class of outer flows, which nevertheless yielded information of 

physical significance. The prior work of Shanebrook [10] formulated the analogous problem 

for uniform suction in the context of the asymptotic solution. Such a solution will be presented 

here in terms of a series expansion involving straightforward application of the method of 
Frobenius. 

The limitations of the two-dimensional (2D) asymptotic solution for a flat plate have been 
discussed by Schlichting [3] and White [11]. For problems of practical interest one would 
conclude that the initial length requirement is excessively long. A review of the experimental 
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data upon which the pessimistic conclusion is based, notably that of Kay [ 12] and Head [ 13 ], 

reveals that the original authors' interpretation of their own data differs from that later appearing 
in the literature. It appears that over a range of flow parameters commonly encountered the 
two-dimensional exponential solution is rapidly approached. Thus the three-dimensional analog 
may have practical utility. 

2. Formulation 

Consider a flat plate with uniform suction Vo, in steady laminar, incompressible flow, as shown 

in Figure 1. The cartesian coordinate system chosen is such that x measures the distance in the 
direction of the uniform approaching stream, y is the distance normal to the plate surface, and 
z is perpendicular to x on the plate. Following the general outer-flow description of Hansen and 
Herzig [9], a) the streamlines are specified as a system of translates as shown in Figure 2 andb) 

the x component of outer-flow velocity, Uo, is taken as constant. Denoting by u, v, w the 
boundary layer velocity components in x, y,  z directions, respectively, by W the outer-flow 
velocity in the z direction and by v the kinematic viscosity, the governing boundary layer 
equations become: 

Momentum: 

au au a2u 
u ~xx + Vo . . . .  ay l, aY 2 0 (x--component), 

bw aw a2w aW 
u-~x + Vo a y - - v  ~y2 = Uo ~ (z--component); 

Continuity: 

~U 
w ~ -  O .  

~x 

The appropriate boundary conditions are: 

u ( x ,O , z )  = w ( x ,O , z )  = w (O , y , z )  = O, 

u ( x ,  oo ,z)  = Uo, W ( x ,  oo ,z)  = W ( x ) ,  

v ( x , O , z )  = vo < O, x > O, 

= 0 ,  x < 0 .  

Y O o 

U o d 

w,z I t ~ ~ t' 

Figure 1. 

D X  

A flat plate with uniform suction at zero incidence in laminar flow. 
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The x-component of the momentum equation, the continuity equation and the applicable 

boundary condition suffice to describe the variation of u within the boundary layer, subject to 

the condition that the outer-flow velocity in the x direction is everywhere a constant. The 
solution for u is the well known exponential form for the asymptotic 2D boundary layer with 

suction, i.e. 

u ( y )  = U o ( 1 -  eV°Y/t'), Vo < O. 

Here, note that for Vo > 0 an asymptotic solution of the boundary-layer equations does not 

exist, either in the 2D case or this restricted 3D geometry. The case of Vo > 0 is referred to as 

'mass injection' in the literature and has received considerable attention because of its connec- 

tion with transpiration cooling utilized in gas turbines as well as space vehicles. The subject of 
mass injection is not the object of this work; it suffices to state that in order to handle the 

problem, higher-order boundary-layer theories such as discussed by Klemp and Acrivos [14] 

are necessary. 

With the x-component of velocity determined, it remains to solve the z-component of the 

momentum equation for w. The ease with which this step may be taken is stongly dependent 

on the form assumed for the outer-flow z-component of velocity. Hansen and Herzig found it 

useful to specify W(x)  = Z, aix i for the case of an impermeable wall. This choice led to a 

similarity solution for the crossflow velocity profile in the boundary layer. However, such a 

result is not expected for the constant suction problem due to the invariant form u with respect 

to the plate surface coordinates x and z. Thus a different specification for IV is sought; a conve- 

nient representation is IV(x) = ~_,a~e a~x, oq any real positive integer. In this case the decom- 

position 

l z OUTER.FLIW x 
TREAMLINES 

SURFACE 

Figure 2. Streamline pattern formed by translation in z coordinate direction. 
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I1 

w = ~, a~eaiXfi(y ) (1) 
t=1  

leads quickly to an ordinary differential equation for f~, 

d2fi+ c dfi + b(1 --e-C~)f i = b, (2) 
dy 2 dy 

with c = - - v  o/V, Vo < 0 and b = -  Uoai/v. The boundary conditions become f / ( 0 ) =  0 and 
f/(o~) = 1. 

While the second boundary condition might be expecte d to cause some practical difficulty, 

the problem is well-posed and earlier work suggested that a series solution be attempted. Before 
doing so, it is worthwhile to consider the question of existence of such a solution. Here it is 
expedient to invoke Fuchs' Theorem (cf. [ 15]), i.e. if, with the ordinary differential equation 
written in a form such that the coefficient of d2fffdy 2 is unity, the coefficients of the remaining 
terms are convergent on the interval in question, then a series solution of the form. 

fi = ~ A~Y k÷' (3) 
4 = 0  

exists for at least the homogeneous equation. Such is definitely the case for equation (2). 

3. Analysis 

For convenience, the substitution y* =cy is made in equation (2). With the parameter A 
defined as b/c 2 and the identity 

1--e -ey = t (~  l)n+l(y*)n 
n = 1 n ! ( 4 )  

used to facilitate application of the method of Frobenius, equation (2) may be rewritten as 
follows: 

d2fi dfi, + A ~ (-1)n+~(Y*)n 
r ( l i )  = dy + Ty'  n' = A. (5/ 

/1='1 

Equation (5) is an ordinary second-order differential equation with an ordinary point at 
x = O. The general solution consists of the sum of a homogeneous solution and particular 
solution. The complete solution of the homogeneous part will involve two arbitrary constants. 

Substituting (3) in the homogeneous part of (5), expanding the term involving the param- 
eter A, and collecting the coefficients of successive powers o fy  yields 



s(s-- 1)Aoy s-2 + [s Ao + (s + l )sA1] yS-1 + [(s + 1)At + (s + 2) (s + 1)A2] yS 

+ [(s + 2)A2 + (s + 3) (s + 2)A3 + A  Ao] y , + l  

+ [(s 

+ [(s 

+ 3)A3 +(s+ 3)(s+4)A4 +A 1 

+4)A4  + ( s + 4 ) ( s + 5 ) A s  +A A 2 - - ~  . . .  

+K--1)AK_ ~ + ( s + K - 1 ) ( s + K ) A  r 

~ 2 (__ I)I+KAI_I] 
+A 

,=x (K--1-----7)i Y +  
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, + r - 2 . . .  = 0 (6) 

The quantities in brackets must individually vanish in order that (6) be satisfied for all 
values of y. This requirement applied to the term involving the lowest power of y,  yS-  1, yields 

the indicial equation s(s -- 1) = 0 which has two roots, s = 0 and s = 1. Since the roots are 
separated by an integer, the present case is considered exceptional. This is manifested when the 
coefficient o f y  ~-~ is examined; for s = 0, sAo + (s + 1)sAl vanishes for any set of values of 

Ao and A1. Since it will be shown that a recursion relationship for the remaining coefficients 

Ak in terms of Ak_ x and ultimately A1 exists, Ao and Al are the arbitrary constants which 
define the complete homogeneous solution. The choice s = 1 generates a series which is identical 

to that associated with the coefficient A 1 for s = 0. A general discussion of exceptional cases 
involving the roots of the indicial equation and the existence of series solutions is found in [ 16]. 

Noteworthy are remarks on differential equations having an ordinary rather than singular 
point. 

In ascending powers of y ,  the requirement that remaining coefficients in (6) vanish yields 

A2 =- -A t /2 ,A  3 = A1/6 --A Ao/6,A4 =--Ax /24- -A  (A 1 --Ao)/12 and, in general, 

--Ak_ 1 A k~,2 Az_I ( _  1)t+k 
Ak k k ( k - -1 )  ~=~ ( k - - l - - l ) !  ' k ~> 3, (7) 

with s = 0. 
The choice s = 2 in the series representation (3) leads to a particular solution with coeffcieints 
B k determined by the recurison relation 

Bk = --Bk_ ~ .4 k~2 B~_~_ l)Z+k 
k + 2  ( k +  1 ) ( k +  2 ) = 1  k 1--1)! (S) 

After collecting terms, a truncated form of the full solution may be written as: 
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.6 = ( .6 )h+( .6 )p  = ~ AkY *h +Bhy  *h+2 = Ao + 
k=O 

( Y*4q y*s lly*6 .) 
A l ( 1 - - e  - y * ) + A A I  \ - - -~ -  15 36---O ~ - " "  

{ y , a + y , 4  ) 
+ A A o  . . . .  . . . .  . . . .  ) +  . . . .  

+A  6 - ÷  24 120 + . . .  + A2 I--4-'0 "+ 720 . . . .  

(homogeneous) 

(particular) 

+ h 3 (  . . . .  ) + . . . .  ( 9 )  

Several features of the above solution are noteworthy. First, if the parameter A is set equal to 
zero, the solution is .6 =A0 +Al (1  - -e  -w *). The same result can be obtained directly from 
equation (5). The first boundary condition, f (0)  = 0, requires that Ao = 0 while the second 
b.c., f(oo) = 1, determines the value of A 1. Such is also true of the full solution; unfortunately 
all terms aside from the leading one converge slowly making the task of computing the cofactor 

of A 1 a difficult one. Thus, while it was possible to verify the two components of the solution 

local to the point y = 0 by computing L (fn) and L (fo)  and comparing with zero and A respec- 
tively, a full solution which satisfies the second boundary condition is not readily obtained. 

The convergence problem is circumvented by use of the transformation 

~" = e -cw (10) 

Equation (2) then becomes 

~.2 d2.6 + A 
d - ~  (1-~ ' ) .6  = A, ( 1 1 )  

and the transformed boundary conditions are .6(1) = 0 and.6(0) = 1. The transformed equa- 
tion is also representative of a class for which power-series solutions exist. The point ~" = 0 
corresponding to y = oo is a regular singular point so a nontrivial homogeneous solution may 
exist which is regular in that neighborhood. The lack of definition ofd2ft/d~'2 I~. __, 0 does not 
present a problem insofar as the limit d2.6/dy21 w ..., ** is concerned. The second derivative of 
fwi th  respect t o y  expressed in terms of ~',.6(~') and d.6/d~ is: 

dy ed2.6 - c a h --h (1--~')k(~') + ~'-~--] . (12) 

Thus a solution for .6 which satisfies the second boundary condition and possesses a finite 
first derivative at g" = 0 will give d2.6/dy 2 = 0lw ~ **. This result is in accord with physical 
reasoning. 
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Resorting once again to the method of Frobenius, series solutions of the homogeneous and 
particular type are sought for equation (11) utilizing the series representation (3). The parameter 
s is tentatively chosen as zero for the particular solution while the indicial equation for the 

homogeneous solution 

s 2 - s + A  = 0 (13) 

provides two values for each choice of A: 

1 -+(1 --4A) I/2 
s = (14) 

2 

Note that for A > 1/4, both roots are complex. It turns out that for A > 0 the resulting velocity 

distribution is not of the boundary layer type, limiting choices of ¢h to positive values. Since 
with A < 0 the general solution will normally involve the sum of two linearly independent 

solutions to the homogeneous part of (11), one of which has a leading term with an exponent 
less than zero, some simplification is immediately possible. The general solution must satisfy 
the boundary condition f ( 0 ) =  1 which dictates that the coefficient C1, associated with the 

singular part of the solution represented b y f  i = (ft)h + (f~)p = C1 F1 + C2 F2 + (fi)p, be zero. 
Further limitations of the series solution related to permissible values of the parameter A 

motivate a discussion of the range of interest. The present analysis is applicable to incompress- 
ible fluid flow at relatively high Reynolds numbers, i.e. low kinematic viscosity. The experi- 
ments of J.M. Kay [ 12] provide appropriate numerical values. Kay's experiments were conduc- 
ted with a free stream velocity (Uo) of 57 ft/sec., in air at approximately standard conditions 

of pressure and temperature; the associated kinematic viscosity is then 0.00016 ft2/sec. The 
suction velocity ratio for a series of Kay's experiments was 0.0029 implying vo = 0.165 ft/sec; 
with a maximum value of oti equal to 1.0 for a reasonably accurate representation of a circular 

arc streamline, the corresponding three-dimensional analysis would then involve 0 > A > -  0.35. 
Specific choices of A, A ~< 0 lead to roots of the indicial equation which may differ by an 

integer. This will occur when (1 --4A)~/2 assumes integer values, e.g. (1 --4A)1/2 = 1,2,3,4,5 

etc. for A = 0, - -3/4,  - -2 ,  -- 15/4, - -6  respectively. In such cases a In ~" term [cf. 16] may 
appear in general solution to (11). A solution of this type will not be developed here for two 

reasons: a) the largest nonzero corresponding value of A falls outside the normal range of 

interest, and b) in the unlikely event that the normal range is exceeded and a solution for, 
say A = -  2.0 is required, a very precise approximation may be obtained from the present 

method by slight adjustment of the value of A. In other words, the solution for A = -  2.0 
is undoubtedly well approximated by that corresponding to A = -- 1.999 shown in Figure 3. 

The recursion formula for A k is found to be: 

A Ak_ 1 
Ak = ( k + s ) ( k + s - - 1 ) + A "  (15) 
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2.4 
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2.0 

1.8 

1.6 

1.4 

1.2 

1.0 

.8 

.6 

.4 

.2 

0 .1 .2 .3 ~4 .5 .6 .7 .8 .9 1.0 

Figure 3. Solution to equation (11) for several values of the parameter A. 

The recursion formula for the coefficients of the particular solution is, 

A B k - l  (16) 
B k  - k ( k - - 1 )  + A " 

The earlier discussion indicates that a physically reasonable value for A i s - -5 /16 ;  the 
larger value of s defined by (14) is then 5/4. A corresponding complete solution to (11) in 

truncated form is 

ft=Ao(~ ' '  ~''4 5~''3''4 25~'19'' ) 
-- 8 + ~ 19353-~ + . . . .  

5 2 25 ~-3 (17) 
+ 1 + ~ ' - - ~ - ~ "  +2457  + . . . .  

Here, in a manner similar to that encountered for the solution of equation 5, the boundary 
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condition f ( 0 )  = 1 is immediately satisfied while the boundary condition f ( 1 )  = 0 determines 

the value o f  A0. Note that dfi/d~l~-., o is unity. 

The complete solution is a linear combination of  two infinite series; a question naturally 

arises as to how many terms must be carried in order to give accurate numerical values. It 

turns out that for A close to zero several terms suffice; as the magnitude of  A increases more 

terms must be retained. Rather than express the remainder formally, it was found expedient to 

determine the number of  terms required for each case by numerically calculating the values of  

L ( f h )  and L( f p ) ,  retaining enough terms so that the result was zero and A respectively to six 

decimal places at each point in the interval (0,1). Roughly speaking, for 0 > A  > -- 1, ten terms 

are required, -- 1 > A  > -- 20 twenty terms and -- 20 > A  > -- 100, forty terms. Such compu- 

tation can be effectively handled on a computer of  modest capability. 

The form of  the solution is shown in Figure 3 for several values of  the parameter A. A 

geometrical similarity to Hansen and Herzig's solution for the impermeable wall case exists. A 

solution corresponding to a positive value of  A is given for the sake of  completeness. 

4. Specification - Outer-flow 

Reiterating, the cases which can be solved by the present method are those in which the outer- 

flow streamlines are translates and 

U = Uo = a constant, W(x)  = ~., a~e aix, (18) 

where ai may be any real number greater than or equal to zero. 

It is desired to construct outer-flow streamlines similar to the family considered by Hansen 

and Herzig using the above formulation. In the interest of  considering physically realistic cases 

associated with a system of translates, the flow shall be perpendicular to the plate leading 

edge. A form for z(x) ,  the curve representing the outer-flow streamline, which satisfies the 

latter condition is 

z ( x )  = de x/d - - e  x +Co, Co aconstant .  

A plot of  z ( x )  for several choices of  d is given in Figure 4, in comparison with the circular arc 

streamline case. It is evident that such a choice is reasonable from geometrical viewpoint as 

well as meeting the requirements of  the present analysis. 

Turning to a more general case, the objective is to construct streamlines in accordance with 

the specification (18), i.e., such that 

dz (x)  ~ aie atx 

ax fo 
(19) 

which closely approximate polynomials in x. While this can be done precisely for some special 
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1.o~,..z (x) 

.9 

.8 

,5 

.4 

.3 - -  

.2 

.1 - -  

o I 
.1 

Figure 4. 

i 
I 
I 
I 

z (x)= e x- de x/a + d-1 I 
I 

I 
. . . .  z (x)= 1-~/- 1-x2 I 

,4 

,3 

.2 .3 .4 .5 .6 .7 .8 .9 1.0 

Simple approximation of the circular arc using a sum of exponential functions. 

cases through straightforward expansion of e a~x in a power series, a more flexible means was 
sought. An adequate means of approximation is to specify a number of points (x ,z (x) )  
coincident with the curve for which the representation 

rl  

z(x)  = ~ a~e "e~, a* - ai (20) 
t=l  Uo°ti  ' 

is desired. The number of points chosen then fixes n. The cofactors of the argument of the 
exponential function, at are free parameters and are found through numerical experimenta- 

tion. Each coordinate point (x ,z (x) )  imposes a condition on the coefficients a~* and thus n 
coordinate points results in n algebraic equations for a~*. 

A numerical example that demonstrates the simplicity of the approach is found in the 

following section of this report. 

The effect of suction on the crossflow velocity distribution and the boundary-layer stream- 
line trajectories are of interest. Integration of the system 

d y  v o v 
- - , ( 2 1 )  

dx Uo(1 - -e  - ~  ) u 

dz ~., aieaiXfi(y ) w 
= -- (22) 

dx Uo(1 - -e  - ~ )  u 

determines the functions y(x)  and z(x)  corresponding to the x ,y  and x,z projections of the 
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Figure 5. Resolution o f  velocities into components  normal and tangential to outer-flow. 

boundary-layer streamlines respectively. Equation (21) may be integrated explicitly but results 

in a transcendental equation for y(x), which precludes direct integration of the second equation. 
Calculations of the boundary-layer streamline projections were therefore carried out numerically 

using a Runge-Kutta algorithm. 
Boundary-layer velocity distributions were obtained in streamline coordinates, i.e., normal 

and tangential to the streamlines as indicated in Figure 5. The normalized form of the compo- 

nents, n* and t* are given by: 

w-uW /U o  
n* - (23) 

u + wW/Uo 
t* - (24) 

+ w 2 

5. Numerica l  results  

To facilitate a comparison with an impermeable-wall case solved by Hansen and Herzig, the 

circular-arc streamline described by z(x) = 1 --(1 - - x  2) 1/2 is chosen for the outer-flow. The 

condition z(0) = z * '(0) = 0 as well as z(x) = z* (x) at x = 0, 0.4 and 0.7 are imposed. Taking 

at as i/4, the linear algebraic system for a* is 

0.25 0.5 0.75 1.0 

1.0 1.0 1.0 1.0 

1.1052 1.2214 1.3499 1.491~ 

1.1912 1.4191 1.6905 2.0138 

a; 0.0 

a~' 0.0835 

a~ 0.28591 
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Solution of this system yields 

z ( x )  = 8.9550e 1/4x _ 19.8992e 1/2x + 12.9333e 3/4x - -  1.9891 e x. 

The corresponding expression for IV(x) is obtained by differentiation and may be written as 

IV(x) = Uo(2.2388e 1/4x _ 9.9496e 1/2x ..[.. 9.7e 3/4x - -  1.9891 eX). 

The error of these approximations is best judged by examining the accuracy of W/Uo as a 
function of x. Figure 6 presents a comparison with the exact data. The error, while tolerable, 

could be reduced by including more terms and adopting a systematic approach in choosing 
the coefficients of the exponential function. However, the accuracy of the approximation is 
sufficient for present purposes. 

A computer code was written to calculate boundary layer streamline and velocity profiles. 
Given values of kinematic viscosity, Uo, vo and a description of the outer-flow streamline, 
individual solutions j~(y) are computed corresponding to each cofactor of the exponential 
argument, a~. The solutions are then combined in accordance with (1), to describe the boundary- 
layer crossflow velocity components w. Next, the velocity profiles u and w are computed at a 
specified number of locations x, in both the streamline and cartesian reference frames. Finally, 

the boundary-layer streamline for a specified initial condition is determined, the calculations 
carried forth until y assumes a negative value, indicating that the flow has entered the wall. 

The three-dimensional uniform-suction problem is characterized by the parameters A and c. 
As in the two-dimensional case the boundary-layer thickness is inversely proportional to 
C(Vo/V). The parameter A ( - -  UooqV/v 2)  is related solely to the three-dimensional case and is a 
measure of the deviation of the crossflow profile from exponential. Note that by equation (2) 

A = b = 0 ,  i = I = N  results in f N = l - - e  -e~, and therefore W = a N e % v ( 1 - - e - C ~ ' ) .  The 
choice A = 0 represents a limiting case in terms kinematic viscosity, suction velocity or stream- 
line local radius of curvature the latter associated with t~ i. For a t = 0 w is constant and the 
problem becomes two-dimensional through appropriate specification of the coordinate system. 

.10 

.05 
0 I 

05 - 
. 1 0  - 

Figure 6. 

z*'(x)- z'(x) ~ 1  z * ' ( x )  

I I m x 
.I .2 .3"~",~..4 .5 J.6"" .7 .8 

Measure of fit of circular-arc streamline byZ a*eai x 
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Numerical results for the circular arc streamline case are presented with A/a  s = 0.222 and 

c = 3.3 x 10 -4 . Such choices are physically reasonable and result in a relatively short initial 

length before the asymptotic solution may be assumed to have validity. The subject of  the 

initial-length requirement will be discussed in a following section. 

Boundary layer streamlines 

A comparison of boundary-layer streamlines for the  impermeable wall and uniform-suction 

cases is somewhat confused by the differing boundary-layer thicknesses existing for the two 

cases. With suction 6 ~ 4.828 (v/vo) while initially 6 ~ 5.0 (vx/Uo)1/2 for the impermeable 

wall and tends to grow faster with x than thus indicated as the crossflow develops. This fact 

must be kept in mind when evaluating the suction effect. 

The xy and xz projections of the boundary-layer streamlines are given in Figures 7a,b 

respectively, for the circular-arc case. They clearly demonstrate that even at the low suction 

, ~Y/4-605 (v/-Vo) 

1.0 ~ Uo/v= 2.0x106 

8 - ~ v°/U° =-'0015 
" ~ " ~  Aia=2.22x10-1 

"01 I I I ~ I "~  v X 

0 .2 4 .6 .8 

0 

.1 

.2 

.3 

.4 

.5 

.2 .4 .6 .8 
I I ]bx  

OUTER-FLOW 
"~ ~ q ~ L ~ l l ~ ' ~ -  STREAMLINER 

. 6 2 5 6 ~ % ~ , =  (CIRCULAR ARC) 

- Uo/V = 2.0 X 106 "75 " 8 7 5 d ' ~ ~ 1  &"'~ ~ ~1[~'~'~1~ 
m2~ 

A/a = 2.22 x 10 -1 

Vo/U o = 0,0 
I 
t 

Figure 7. x-y and x-z projections of boundary-layer streamlines for a suction and the impermeable-wall 
c a s e .  
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rates involved, fluid particles at the outer edge of the boundary layer are drawn into the wall a 
relatively short distance from the leading edge. The general features of the boundary-layer 
velocity profile shown in Figure 8 are common to both cases of suction velocity but have dif- 
ferent influences on the streamline deflection. In the cases of the impermeable wall, fluid par- 
ticles tend to stay at approximately the same distance above the plate and so the deflection of 
streamlines within the boundary layer is related to the development of crossflow at essentially con- 
stant height. Suction causes a vertical migration of fluid particles causing a particle in the outer- 
flow to traverse the region of maximum crossflow component before reaching the wall. Thus 
the somewhat similar pattern of the boundary streamline xz projection is not surprising. A signi- 
ficant difference, of course, is that in the case of suction the streamlines terminate at the wall. 

The effect of suction velocity on the streamline projections is shown in Figure 9a,b. Strong 
suction further limits the deflection of boundary-layer streamlines relative to the outer-flow 
streamline by decreasing the residence time of a fluid particle within the boundary layer. 

Velocity profiles 

The resolution of the boundary layer velocity distribution into normal and tangential compo- 
nents relative to a streamline is as depicted in Figure 5. Here n* and t* denote the normal and 

~ ~ I  ~ Y 

STREAMLINE 

- ,,-~. x 

! 
! 

! 

i 
Z 

WALL 
STREAMLINE 

Figure 8. A typical three-dimensional boundary-layer velocity prof'fle indicating crossflow and streamline 
components. 



1 . 0  ~ 

.8 

.6  

.4 

.2 

0 
0 

y/4.605 (v/vo) 

v ° 5x10 -3 
v°/U°=-2"0xl0-3l ~ ~ ~  

_ vo/Uo = -3.0x10 -3 ' ~  

I ~ x  
2 .4 .6 .8 

87 

.2 .4 .6 .8 
0 ~ I I I I='x 

OUTER-FLOW 
v /U = -3.0 x 10 -3 ~"~"~ STREAMLINE 

.1 - -  o-o . . . . . . .  / , # - ~  (CIRCULAR ARC) 

2 -- Vo/Uo = -2"0x10-3 " ~ % ' ~  / 

,,,,\ 
. , _  \ 

s_ / "  VolUo=_l.5 x 10_ 3 It 
I= 

Figure 9. Boundary-layer streamline projections indicating the influence of suction 

tangential components respectively. Figure 10 shows the effect of suction on the distributions; 

included is the impermeable-wall case as calculated in [9]. The effect of suction in inhibiting 

the development of crossflow within the boundary layer is noteworthy. 

6. Initial-length requirement 

The condition v(x,y,z) = vo, x > O, Vo a negative constant, is valid only after an initial length. 
As shown previously, imposing this condition decouples the two components of the momentum 
equation, admits the exponential distribution for u(y) and leads to a relatively straightforward 

solution for w. Undoubtedly, the general case of uniform suction represented by 

v (x ,O , z )  = Vo, x > O, Vo < O, 

v(x,y,z) = v(x,y)  
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Figure 10. Boundary-layer velocity profiles in streamline coordinates indicating the influence of suction. 

would be much more difficult to solve. The question remaining involves the practical importance 
and reality of the asymptotic solution, i.e. can the behavior described by the solution to this 
restricted problem be expected to occur? A complete answer is not available in the absence 

of experimental verification. However, insight can be gained by examining information available 
on the analogous two-dimensional case. 

In two dimensions, a solution to the general uniform-suction case for the fiat plate exists, 

due to Iglisch [2]. The boundary-layer velocity profile is shown to develop as a function of the 
dimensionless length ~ = (--Vo/Uo)2(Uox[v) as indicated in Figure 11. Depending on the 
required degree of accuracy, a rule may be established which defines achievement of the asymp- 
totic state in terms of a fixed value of ~. Schlichting [3] chooses 4.0, which with regard to 
Figure 11 is certainly reasonable, and White [11 ] discusses the severe limitations of the asymp- 
totic theory on that basis. However, an examination of experimental data applicable to the 
problem indicates that the results of Iglisch may be unduly pessimistic. 

The experiments of J.M. Kay [12] were conducted on a 2 ft by 1 ft porous plate mounted 
in a closed-circuit wind tunnel with a non-porous leading-edge section of 4 inches in length. At 
the entrance of the test section a duct below the test plate removed the tunnel wall boundary 
layer. The rate of suction flow through the wall was measured by two venturi meters connecting 
the pump to the suction chamber. The maximum variation of mean suction velocity is reported 
as ten percent with a much smaller variation evident over the central portion. Data was taken 
under laminar and turbulent flow conditions: only the laminar flow data is of interest in the 
present study. Data useful in establishing the initial length requirement was taken for vo/Uo = 

0.0029, Uo = 57 ft/sec and was presented in the form of  velocity distributions, momentum and 
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Figure 11. Velocity profiles over the initial length of a flat plate in two-dimensional flow with uniform 
suction. After R. Iglisch [2]. 
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Approach to the asymptotic condition of two-dimensional laminar flow over a flat plate with 
uniform suction - data of J.M. Kay [ 12] 

displacement thickness at 8 different locations on the plate between the start and end of the 

porous section. In addition, establishment of the Blasius profile at the end of the leading non- 

porous section was demonstrated. 

Plots of the momentum and displacement thickness for this test series are given in dimen- 

sionless form in Figure 12 as a function of distance from the leading edge. According to J.M. 
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Kay, 'With suction applied, the velocity prof'fles approach rapidly towards the laminar asymp- 

totic exponential f o r m . . ,  as the distance X along the plate increases, This process is revealed 
clearly in (Figure 12) where the displacement thickness ~ * and the momentum thickness 0 
are plotted against distance X (dimensionless coordinate ~). From X = 8 in. onwards, the 
momentum thickness remains substantially constant and is in close agreement with the theo- 
retical asymptotic value v/2vo. The displacement thickness settles down in a similar manner to 
the theoretical asymptotic value v/vo. There is some slight variation from point to point along 
the plate but this is simply due to local variation in the porosity of the surface. For example, at 
the point corresponding to the velocity profile of X = 21.7 in. (~ = 5.5) the porosity is below 
standard but further on as at X = 27.4 in. (~ = 7.0) the surface is better and the profile is in 
closer agreement with the asymptotic form.' 

Application of the initial-length requirement based on Iglisch's analysis would predict attain- 
ment of the asymptotic state 15.72 inches from the beginning of the porous wall, while J.M. 
Kay observed that less than 4 inches was required. 

A second pertinent series of experiments were conducted by M.R. Head [13], utilizing an 
airfoil section mounted vertically under the fuselage centerline of a twin-engine air-fuselage 
plane. The porous surface of the airfoil extended from approximately 10 to 68 percent of 

chord. Many sets of boundary-layer traverse data are presented, with varying suction rates. 
Acceptable agreement with the exponential profile is found with ~ as low as 0.608. 

M.R. Head presents one more set of data of interest pertinent to the asymptotic theory. 

With regard to the variation of skin friction along the centerline of the aerofoil, the author 
states: 'It will be observed that, for vo/Uo = .0016, the distribution of skin friction is some- 

what similar to that of suction velocity. This curve also indicates that, had the suction velocity 

been uniform (the) asymptotic condition would have been rapidly approached.' Study of the 
data reveals that for a choice of ~ = 4.0 the initial length required would be on the order of 

14 inches while the skin friction data indicates establishment of the exponential profile within 
2 inches of the start of the porous surface. 

Later analysis appears to support the conclusion that an initial length derived from Iglisch's 

calculations is excessively long. A summary of theoretical investigation regarding development 
of the asymptotic profile after a solid length, reported in [6], indicates a change in ~ of less 
than 0.5 may be sufficient in characterizing the approach to the asymptotic state. 

To summarize, the initial-length requirement for attainment of the asymptotic state is 
probably considerably less than estimated on the basis of Iglisch's analysis. This is encouraging 
with regard to application of the asymptotic theory in two or three dimensions. 
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